User:Marin1213/Bio-Battery

Source: Wikipedia, the free encyclopedia.

A bio-battery is an energy storing device that is powered by organic compounds, usually being glucose, such as the glucose in human blood. When enzymes in our bodies break down glucose, several electrons and protons are released. Therefore, by using enzymes to break down glucose, bio-batteries directly receive energy from glucose. These batteries then store this energy for later use[1]. This concept is almost identical to how both plants and many animals obtain energy. Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries.


How it Works

Bio batteries have several components that allow them to work properly and create energy.

Structure

Bio-batteries contain an anode, cathode, separator and electrolyte, which are the basic components to any cell battery. Each component is layered on top of another component. Anodes and cathodes are the negative and positive areas on a battery. The anode is located at the top of the battery and the cathode is located at the bottom of the battery[1]. Anodes are components that allow electrons to flow in from outside the battery, whereas cathodes are devices that allow current to flow out from the battery.

Between the anode and the cathode lies the electrolyte which contains a separator. The main function of the separator is to keep the cathode and anode separated, to avoid electrical short circuits. This system as a whole, allows for a flow of protons (H+) and electrons (e-) which ultimately generate electricity[2].

Glucose

Bio batteries are heavily based on the amount of glucose available. This glucose (sugar) can be provided from nearly anything, including soda, waste materials (such as old papers), or the glucose in living organisms[3] . The decomposition of materials to glucose (if they are not already in the proper stage) is the main step in getting the cycle started. Materials can be converted into glucose through the process of enzymatic hydrolysis. Enzymatic hydrolysis is the process in which cellulose (an insoluble substance) is converted to glucose with the addition of enzymes[4] . After glucose exists oxygen and other enzymes can act on the glucose to further produce hydrogen ions and electrons.

Process

Similar to how human bodies convert food to energy using enzymes, bio-batteries use enzymes to convert glucose into energy[1] . When glucose first enters the battery, it enters through the anode. In the anode the sugar is broken down, producing both electrons and protons.

Glucose → Gluconolactone + 2H+ + 2e

These electrons and protons produced now play an important role in creating energy. They travel through the electrolyte, where the separator redirects electrons to go through the mediator to get to the cathode [1]. On the other hand, protons are redirected to go through the separator to get to the cathode side of the battery[2].

The cathode then consists of an oxidation reduction reaction[1]. This reaction uses the protons and electrons, with the addition of oxygen gas, to produce water.

O2 +4H+ + 4e → 2H2O

There is a flow created from the anode to the cathode which is what generates the electricity in the bio-battery[1]. The flow of electrons and protons in the system are what create this generation of electricity.

Advantages

A significant advantage that bio-batteries have in comparison to other batteries is their ability to allow an instant recharge [5]. In other words through a constant supply of sugar, or glucose, bio batteries are able to continuously keep themselves charged without an external power supply. Bio batteries are also a source of non-flammable, and non-toxic fuel. This provides a clean alternative renewable power source [5].

Disadvantages

Compared to conventional batteries, such as lithium batteries, bio-batteries are less likely to retain most of their energy[6] . This causes a problem when it comes to long term usage and storage of energy for these batteries. However, researchers are continuing to develop the battery in order to make it a more practical replacement for current batteries and sources of energy[6].

Future

Bio-batteries have a very bright future ahead of them as test productions and research have been increasing over recent years. They serve as a new form of energy that is proving to be environmentally friendly, as well as successful, in producing and reserving energy [5]. Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries [5]. One corporation consistently working on the advancement of these bio batteries is Sony. In fact, Sony has created a bio battery that gives an output power of 50 mW (milliwatts). This output is enough to power approximately one MP3 player[2] . Sony, however, is planning to continue their research and development on bio batteries for commercial use. In the coming years, Sony plans to take bio batteries to market, starting with toys and devices that require a small amount of energy[6]. Several other research facilities, such as Stanford and Northeastern, are also in the process of researching and experimenting with bio batteries as an alternative source of energy. Since there is glucose in human blood, some research facilities are also looking towards the medical benefits of bio-batteries and their possible functions in human bodies. Although this has yet to be further tested, research continues on the subject surrounding both the material/device and medical usage of bio-batteries.



References

  1. ^ a b c d e f "Bio Battery". Sony Corporation.
  2. ^ a b c Kannan, Renugopalakrishnan, Filipek, Audette, Li, Munukutla. "Bio-Batteries and Bio-Fuel Cells: Leveraging on Electronic Charge Transfer Proteins" (PDF). American Scientific Publishers.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. ^ "Sony's bio battery turns waste paper into electricity". BBC News. BBC. 2012-03-08.
  4. ^ "Enzymatic Hydrolysis". Biology-Online.org.
  5. ^ a b c d "Bio-Battery: Clean, Renewable Power Source". CFD Research Corporation. Retrieved 17 October 2012.
  6. ^ a b c "CELLULOSE-BASED BATTERIES". Confederation of Swedish Enterprise. 2012-09-07.


"Bio-Battery." Sony Corporation. <http://www.sony.net/SonyInfo/technology/technology/theme/bio_01.html>.

"The Bio-Battery: Converting Sugar into Electrical Energy." Armed with Science. <http://science.dodlive.mil/2010/08/26/the-bio-battery-converting-sugar-into-electrical-energy/>.