User:Gtholland1/sandbox

Source: Wikipedia, the free encyclopedia.

Metalworking processes

Metals are shaped by processes such as:

  • casting – molten metal is poured into a shaped mold.
  • forging – a red-hot billet is hammered into shape.
  • rolling – a billet is passed through successively narrower rollers to create a sheet.
  • laser cladding – metallic powder is blown through a movable laser beam (e.g. mounted on a NC 5-axis machine). The resulting melted metal reaches a substrate to form a melt pool. By moving the laser head, it is possible to stack the tracks and build up a three-dimensional piece.
  • extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools.
  • sintering – a powdered metal is heated in a non-oxidizing environment after being compressed into a die.
  • machininglathes, milling machines, and drills cut the cold metal to shape.
  • fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape.
  • 3D printing – Sintering or melting amorphous powder metal in a very minute

άΈάάon a moving 'print head' moving in 3D space to make any object to shape.

Cold-working processes, in which the product’s shape is altered by rolling, fabrication or other processes while the product is cold, can increase the strength of the product by a process called work hardening. Work hardening creates microscopic defects in the metal, which resist further changes of shape.

Various forms of casting exist in industry and academia. These include sand casting, investment casting (also called the lost wax process), die casting, and continuous castings.

Heat treatment

Metals can be heat-treated to alter the properties of strength, ductility, toughness, hardness and/or resistance to corrosion. Common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering.[1] The annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft-edged so that when the metal is hit or stressed it dents or perhaps bends, rather than breaking; it is also easier to sand, grind, or cut annealed metal. Quenching is the process of cooling a high-carbon steel very quickly after heating, thus "freezing" the steel's molecules in the very hard martensite form, which makes the metal harder. There is a balance between hardness and toughness in any steel; the harder the steel, the less tough or impact-resistant it is, and the more impact-resistant it is, the less hard it is. Tempering relieves stresses in the metal that were caused by the hardening process; tempering makes the metal less hard while making it better able to sustain impacts without breaking.

Often, mechanical and thermal treatments are combined in what are known as thermo-mechanical treatments for better properties and more efficient processing of materials. These processes are common to high-alloy special steels, superalloys and titanium alloys.

Plating

Electroplating is a chemical surface-treatment technique. It involves bonding a thin layer of another metal such as gold, silver, chromium or zinc to the surface of the product. It is used to reduce corrosion as well as to improve the product's aesthetic appearance.

Shot peening

Shot peening is a cold working process used to finish metal parts. In the process of shot peening, small round shot is blasted against the surface of the part to be finished. This process is used to prolong the product life of the part, prevent stress corrosion failures, and also prevent fatigue. The shot leaves small dimples on the surface like a peen hammer does, which cause compression stress under the dimple. As the shot media strikes the material over and over, it forms many overlapping dimples throughout the piece being treated. The compression stress in the surface of the material strengthens the part and makes it more resistant to fatigue failure, stress failures, corrosion failure, and cracking. [2]

Thermal spraying

Thermal spraying techniques are another popular finishing option, and often have better high temperature properties than electroplated coatings.

  1. ^ Arthur Reardon (2011), Metallurgy for the Non-Metallurgist (2nd edition), ASM International, ISBN 978-1-61503-821-3
  2. ^ whats Shot Peening http://www.engineeredabrasives.com/what-is-shot-peening.html