Solar eclipse of December 7, 2094

Source: Wikipedia, the free encyclopedia.
Solar eclipse of December 7, 2094
Map
Type of eclipse
NaturePartial
Gamma1.1547
Magnitude0.7046
Maximum eclipse
Coordinates10°30′S 39°00′E / 10.5°S 39°E / -10.5; 39
Max. width of band142 km (88 mi)
Times (UTC)
Greatest eclipse20:05:56
References
Saros124 (59 of 73)
Catalog # (SE5000)9721

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, December 7, 2094,[1][2] with a magnitude of 0.7046. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It will be visible across North America.

This will be the last of four solar eclipses in 2094, with the others occurring on January 16, June 13, and July 12.

Eclipses in 2094

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 124

Inex

Triad

Solar eclipses of 2094–2098

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2094 to 2098
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 June 13, 2094

Partial
−1.4613 124 December 7, 2094

Partial
1.1547
129 June 2, 2095

Total
−0.6396 134 November 27, 2095

Annular
0.4903
139 May 22, 2096

Total
0.1196 144 November 15, 2096

Annular
−0.20
149 May 11, 2097

Total
0.8516 154 November 4, 2097

Annular
−0.8926
159 May 1, 2098 164 October 24, 2098

Partial
−1.5407

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 43–64 occur between 1801 and 2200:
43 44 45

June 16, 1806

June 26, 1824

July 8, 1842
46 47 48

July 18, 1860

July 29, 1878

August 9, 1896
49 50 51

August 21, 1914

August 31, 1932

September 12, 1950
52 53 54

September 22, 1968

October 3, 1986

October 14, 2004
55 56 57

October 25, 2022

November 4, 2040

November 16, 2058
58 59 60

November 26, 2076

December 7, 2094

December 19, 2112
61 62 63

December 30, 2130

January 9, 2149

January 21, 2167
64

January 31, 2185

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2018 and 2200

July 13, 2018
(Saros 117)

June 12, 2029
(Saros 118)

May 11, 2040
(Saros 119)

April 11, 2051
(Saros 120)

March 11, 2062
(Saros 121)

February 7, 2073
(Saros 122)

January 7, 2084
(Saros 123)

December 7, 2094
(Saros 124)

November 6, 2105
(Saros 125)

October 6, 2116
(Saros 126)

September 6, 2127
(Saros 127)

August 5, 2138
(Saros 128)

July 5, 2149
(Saros 129)

June 4, 2160
(Saros 130)

May 5, 2171
(Saros 131)

April 3, 2182
(Saros 132)

March 3, 2193
(Saros 133)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between July 15, 2083 and December 7, 2170
July 14–15 May 2–3 February 18–19 December 7–8 September 25–26
118 120 122 124 126

July 15, 2083

May 2, 2087

February 18, 2091

December 7, 2094

September 25, 2098
128 130 132 134 136

July 15, 2102

May 3, 2106

February 18, 2110

December 8, 2113

September 26, 2117
138 140 142 144 146

July 14, 2121

May 3, 2125

February 18, 2129

December 7, 2132

September 26, 2136
148 150 152 154 156

July 14, 2140

May 3, 2144

February 19, 2148

December 8, 2151

September 26, 2155
158 160 162 164

July 15, 2159

December 7, 2170

References

  1. ^ "Partial Solar Eclipse on December 7, 2094". www.timeanddate.com. Retrieved 2024-06-01.
  2. ^ "Solar Eclipse of December 7 2094". theskylive.com. Retrieved 2024-06-01.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.