PKS 1402-012

Source: Wikipedia, the free encyclopedia.
PKS 1402-012
The quasar PKS 1402-012, seen by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationVirgo
Right ascension14h 04m 45.895s
Declination-01d 30m 21.947s
Redshift2.518154
Heliocentric radial velocity754,924 km/s
Distance10.732 Gly (light travel time distance)
Apparent magnitude (V)0.149
Apparent magnitude (B)0.197
Surface brightness18.3
Characteristics
TypeOpt.var, RLQ
Other designations
UM 632, 2QZ J140445.8-013022, PGC 50193, NVSS J140445-013021, QUEST 123404, TXS 1402-012, IRCF J140445.8-013021

PKS 1402-012, also known as UM 632, is a quasar located in the constellation of Virgo. With a redshift of 2.51, the object is located 10.7 billion light-years from Earth.[1]

Characteristics

As one of the objects observed and noted by researchers analyzing the Parkes quarter-Jansky flat-spectrum sample at Parkes Observatory,[2][3] PKS 1402-012 is classified a blazar.[4][5][6] Optically variable,[7] it is a type of active galaxy shooting out an astrophysical jet in the direction of Earth, PKS 1402-012 is found to emit large amounts radiation over the whole electromagnetic spectrum up to TeV energies.[8] It was a target of prior X-ray observations mentioned in the Einstein quasar database[9] and is a high redshift gamma ray loud quasar.[10][11]

PKS 1402-012 is also a BL Lac object[12] and such has a bolometric luminosity of 1044 ≲ L≲ 1048 erg s−1 with a weak emission-line showing EW(C iv)≲10 Å, with a high Eddington ratio, in relationship to the modified Baldwin effect.[13] Like other quasars, PKS 1402-012 has a flux-density distribution and luminosity function stronger than 2.4 mJy[14] The flux-density varies time to time. In 1972, the flux density was at 0.67 Jy with the flux-density decreasing to 0.15 Jy in 1989.[15]

The host galaxy of PKS 1402-012 is a massive starburst early-type galaxy, located inside an overdense rich galaxy cluster at a >=2σ level.[16] It is found amidst a violent star-forming event, producing a significant fraction of stars within 0.5 billion years[17] and large quantities of high-density ionized gas in its regions.[18] The quasar contains an extragalactic radio source,[19] which is responsible for powering strong star formations with rates of ~500 M_sun per year, consistent with its "quasar mode" accretion in which cold gas flows fuel both the AGN and starburst.[14][20]

According to the Hubble Space Telescope, PKS 1402-012 is a gravitational lensed quasar which researchers noted ground based direct imaging characterized by a good dynamical range is the best observational strategy in the long term.[21][22]

Absorption-line system

PKS 1402-012 has an absorption-line.[23] In a study of 821 quasars and 8558 absorption-line systems sampled in the quasar spectra, researchers found lines of heavy elements and neutral hydrogen in PKS 1402–012.[24] Apart from that, the quasar also shows evidence of HI 21 cm absorption,[25] is a strong C IV absorber stronger EWrest>=0.5 Å[26] and a damped Lyman α (DLA) system, containing ~90 per cent of the neutral HI mass.[27][28]

Through observation by researchers for its spectral line equivalent widths, the quasar also contains O [III] narrow lines and C IV λ1549 and Mg II λ2799 broad lines, correlating positively with R I at 4σ-8σ level but no strong depended on R suggesting the line-of-sight angle to the radio-jet axis of PKS 1402-012 decreases.[29] Furthermore, they found Ca ii absorbers with a rest frame equaling to widths of Wr,3934 = 15-799 mÅ and column density of log N(Ca ii) = 11.25-13.04, following a steep power law pattern of, f(N) ∝ N - β and slope angle - β = -1.68.[30]

Researchers also detected a 21-cm absorption in Mg ii absorbers of PKS 1402–012. Through results, they found the quasar has a linear size of LS < 100 pc, since its detection rate is higher at cm wavelengths. With a velocity width of ΔV > 100 km s−1, PKS 1402-012 also shows an extended radio morphology at arcsecond scales. Researchers noted the 21-cm detection rate in strong Mg ii systems is constant over 0.5 < zabs < 1.5; that is over ~30% of the total age of universe.[31]

Black hole

According to researchers who used a mass estimator based on the Hβ, Mg II, and C IV emission lines,[32] they found the supermassive black hole in PKS 1402-012 is found to grow at an exponentially rate with a solar mass range estimated 108.8-1010.7 Msolar and high luminosity of 1045.2<λLλ(5100 Å)<1047.3 ergs s−1.[33]

The growth rate of the black hole is found longer compared to the age of the universe with a corresponding epoch, suggesting there was an earlier episode of faster growth at z >~3.[33]

References

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-11.
  2. ^ Wall, J. V.; Jackson, C. A.; Shaver, P. A.; Hook, I. M.; Kellermann, K. I. (2005-04-01). "The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs". Astronomy and Astrophysics. 434 (1): 133–148. arXiv:astro-ph/0408122. Bibcode:2005A&A...434..133W. doi:10.1051/0004-6361:20041786. ISSN 0004-6361.
  3. ^ Jackson, C. A.; Wall, J. V.; Shaver, P. A.; Kellermann, K. I.; Hook, I. M.; Hawkins, M. R. S. (2002-04-01). "The Parkes quarter-Jansky flat-spectrum sample. I. Sample selection and source identifications". Astronomy and Astrophysics. 386: 97–113. Bibcode:2002A&A...386...97J. doi:10.1051/0004-6361:20020119. ISSN 0004-6361.
  4. ^ Xiong, Dingrong; Zhang, Xiong; Bai, Jinming; Zhang, Haojing (2015-07-01). "Basic properties of Fermi blazars and the 'blazar sequence'". Monthly Notices of the Royal Astronomical Society. 450 (4): 3568–3578. arXiv:1504.02706. Bibcode:2015MNRAS.450.3568X. doi:10.1093/mnras/stv812. ISSN 0035-8711.
  5. ^ Mao, Peiyuan; Urry, C. Megan; Massaro, Francesco; Paggi, Alessandro; Cauteruccio, Joe; Künzel, Soren R. (2016-06-01). "A Comprehensive Statistical Description of Radio-through-Gamma-Ray Spectral Energy Distributions of All Known Blazars". The Astrophysical Journal Supplement Series. 224 (2): 26. arXiv:1604.03856. Bibcode:2016ApJS..224...26M. doi:10.3847/0067-0049/224/2/26. ISSN 0067-0049.
  6. ^ Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. (2009-02-01). "Roma-BZCAT: a multifrequency catalogue of blazars". Astronomy and Astrophysics. 495 (2): 691–696. arXiv:0810.2206. Bibcode:2009A&A...495..691M. doi:10.1051/0004-6361:200810161. ISSN 0004-6361.
  7. ^ MacLeod, Chelsea L.; Ivezić, Željko; Sesar, Branimir; de Vries, Wim; Kochanek, Christopher S.; Kelly, Brandon C.; Becker, Andrew C.; Lupton, Robert H.; Hall, Patrick B.; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P. (2012-07-01). "A Description of Quasar Variability Measured Using Repeated SDSS and POSS Imaging". The Astrophysical Journal. 753 (2): 106. arXiv:1112.0679. Bibcode:2012ApJ...753..106M. doi:10.1088/0004-637X/753/2/106. ISSN 0004-637X.
  8. ^ Schleicher, Bernd; Arbet-Engels, Axel; Baack, Dominik; Balbo, Matteo; Biland, Adrian; Blank, Michael; Bretz, Thomas; Bruegge, Kai; Bulinski, Michael; Buss, Jens; Doerr, Manuel; Dorner, Daniela; Elsaesser, Dominik; Grischagin, Sergej; Hildebrand, Dorothee (2019-05-01). "Fractional Variability—A Tool to Study Blazar Variability". Galaxies. 7 (2): 62. Bibcode:2019Galax...7...62S. doi:10.3390/galaxies7020062.
  9. ^ Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan (1994-05-01). "The Einstein Database of IPC X-Ray Observations of Optically Selected and Radio-selected Quasars. I." The Astrophysical Journal Supplement Series. 92: 53. Bibcode:1994ApJS...92...53W. doi:10.1086/191959. ISSN 0067-0049.
  10. ^ Shemmer, O.; Netzer, H.; Maiolino, R.; Oliva, E.; Croom, S.; Corbett, E.; di Fabrizio, L. (2004-10-01). "Near-Infrared Spectroscopy of High-Redshift Active Galactic Nuclei. I. A Metallicity-Accretion Rate Relationship". The Astrophysical Journal. 614 (2): 547–557. arXiv:astro-ph/0406559. Bibcode:2004ApJ...614..547S. doi:10.1086/423607. ISSN 0004-637X.
  11. ^ Nair, A. D. (1997-05-01). "Investigating properties of a set of variable AGN with cluster analysis". Monthly Notices of the Royal Astronomical Society. 287 (3): 641–650. Bibcode:1997MNRAS.287..641N. doi:10.1093/mnras/287.3.641. ISSN 0035-8711.
  12. ^ Landoni, M.; Falomo, R.; Treves, A.; Sbarufatti, B. (October 2014). "Spectroscopy of BL Lacertae objects of extraordinary luminosity". Astronomy & Astrophysics. 570: A126. arXiv:1407.3085. Bibcode:2014A&A...570A.126L. doi:10.1051/0004-6361/201424232. ISSN 0004-6361.
  13. ^ Shemmer, Ohad; Lieber, Sara (2015-06-01). "Weak Emission-line Quasars in the Context of a Modified Baldwin Effect". The Astrophysical Journal. 805 (2): 124. arXiv:1503.07547. Bibcode:2015ApJ...805..124S. doi:10.1088/0004-637X/805/2/124. ISSN 0004-637X.
  14. ^ a b Condon, J. J.; Kellermann, K. I.; Kimball, Amy E.; Ivezic, Zeljko; Perley, R. A. (2013-04-12). "AGN and Starburst Radio Emission from Optically Selected QSOs". The Astrophysical Journal. 768 (1): 37. arXiv:1303.3448. doi:10.1088/0004-637X/768/1/37. ISSN 0004-637X.
  15. ^ Jackson, C. A.; Wall, J. V.; Shaver, P. A.; Kellermann, K. I.; Hook, I. M.; Hawkins, M. R. S. (April 2002). "The Parkes quarter-Jansky flat-spectrum sample". Astronomy & Astrophysics. 386 (1): 97–113. Bibcode:2002A&A...386...97J. doi:10.1051/0004-6361:20020119. ISSN 0004-6361.
  16. ^ Wylezalek, Dominika; Galametz, Audrey; Stern, Daniel; Vernet, Joël; De Breuck, Carlos; Seymour, Nick; Brodwin, Mark; Eisenhardt, Peter R. M.; Gonzalez, Anthony H.; Hatch, Nina; Jarvis, Matt; Rettura, Alessandro; Stanford, Spencer A.; Stevens, Jason A. (2013-05-01). "Galaxy Clusters around Radio-loud Active Galactic Nuclei at 1.3 < z < 3.2 as Seen by Spitzer". The Astrophysical Journal. 769 (1): 79. arXiv:1304.0770. Bibcode:2013ApJ...769...79W. doi:10.1088/0004-637X/769/1/79. ISSN 0004-637X.
  17. ^ Cooke, E. A.; Hatch, N. A.; Rettura, A.; Wylezalek, D.; Galametz, A.; Stern, D.; Brodwin, M.; Muldrew, S. I.; Almaini, O.; Conselice, C. J.; Eisenhardt, P. R.; Hartley, W. G.; Jarvis, M.; Seymour, N.; Stanford, S. A. (2015-09-01). "The formation history of massive cluster galaxies as revealed by CARLA". Monthly Notices of the Royal Astronomical Society. 452 (3): 2318–2336. arXiv:1507.00350. Bibcode:2015MNRAS.452.2318C. doi:10.1093/mnras/stv1413. ISSN 0035-8711.
  18. ^ Netzer, H.; Shemmer, O.; Maiolino, R.; Oliva, E.; Croom, S.; Corbett, E.; di Fabrizio, L. (2004-10-01). "Near-Infrared Spectroscopy of High-Redshift Active Galactic Nuclei. II. Disappearing Narrow-Line Regions and the Role of Accretion". The Astrophysical Journal. 614 (2): 558–567. arXiv:astro-ph/0406560. Bibcode:2004ApJ...614..558N. doi:10.1086/423608. ISSN 0004-637X.
  19. ^ Farnes, J. S.; Gaensler, B. M.; Carretti, E. (2014-05-01). "A Broadband Polarization Catalog of Extragalactic Radio Sources". The Astrophysical Journal Supplement Series. 212 (1): 15. arXiv:1403.2391. Bibcode:2014ApJS..212...15F. doi:10.1088/0067-0049/212/1/15. ISSN 0067-0049.
  20. ^ Maiolino, R.; Shemmer, O.; Imanishi, M.; Netzer, H.; Oliva, E.; Lutz, D.; Sturm, E. (2007-06-01). "Dust covering factor, silicate emission, and star formation in luminous QSOs". Astronomy and Astrophysics. 468 (3): 979–992. arXiv:0704.1559. Bibcode:2007A&A...468..979M. doi:10.1051/0004-6361:20077252. ISSN 0004-6361.
  21. ^ Surdej, J.; Claeskens, J. F.; Crampton, D.; Filippenko, A. V.; Hutsemekers, D.; Magain, P.; Pirenne, B.; Vanderriest, C.; Yee, H. K. C. (1993-06-01). "Gravitational Lensing Statistics Based on a Large Sample of Highly Luminous Quasars". The Astronomical Journal. 105: 2064. Bibcode:1993AJ....105.2064S. doi:10.1086/116584. ISSN 0004-6256.
  22. ^ Maoz, D.; Bahcall, J. N.; Schneider, D. P.; Bahcall, N. A.; Djorgovski, S.; Doxsey, R.; Gould, A.; Kirhakos, S.; Meylan, G.; Yanny, B. (1993-05-01). "The Hubble Space Telescope Snapshot Survey. IV. A Summary of the Search for Gravitationally Lensed Quasars". The Astrophysical Journal. 409: 28. Bibcode:1993ApJ...409...28M. doi:10.1086/172639. ISSN 0004-637X.
  23. ^ Richards, Gordon T.; Laurent-Muehleisen, S. A.; Becker, Robert H.; York, Donald G. (2001-02-01). "Quasar Absorption Lines as a Function of Quasar Orientation Measures". The Astrophysical Journal. 547 (2): 635–648. arXiv:astro-ph/0101063. Bibcode:2001ApJ...547..635R. doi:10.1086/318414. ISSN 0004-637X.
  24. ^ Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A. (2003-12-01). "A catalogue of absorption-line systems in QSO spectra". Astronomy and Astrophysics. 412 (3): 707–709. arXiv:astro-ph/0402331. Bibcode:2003A&A...412..707R. doi:10.1051/0004-6361:20034339. ISSN 0004-6361.
  25. ^ Kanekar, N.; Prochaska, J. X.; Ellison, S. L.; Chengalur, J. N. (2009-06-01). "A search for HI 21cm absorption in strong MgII absorbers in the redshift desert". Monthly Notices of the Royal Astronomical Society. 396 (1): 385–401. arXiv:0903.4487. Bibcode:2009MNRAS.396..385K. doi:10.1111/j.1365-2966.2009.14661.x. ISSN 0035-8711.
  26. ^ Vestergaard, M. (2003-12-01). "Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars". The Astrophysical Journal. 599 (1): 116–139. arXiv:astro-ph/0309550. Bibcode:2003ApJ...599..116V. doi:10.1086/379159. ISSN 0004-637X.
  27. ^ Péroux, C.; McMahon, R. G.; Storrie-Lombardi, L. J.; Irwin, M. J. (2003-12-01). "The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers". Monthly Notices of the Royal Astronomical Society. 346 (4): 1103–1115. arXiv:astro-ph/0107045. Bibcode:2003MNRAS.346.1103P. doi:10.1111/j.1365-2966.2003.07129.x. ISSN 0035-8711.
  28. ^ Ellison, Sara L.; Hall, Patrick B.; Lira, Paulina (2005-10-01). "The Optical-Infrared Colors of CORALS QSOs: Searching for Dust Reddening Associated with High-Redshift Damped Lyα Systems". The Astronomical Journal. 130 (4): 1345–1357. arXiv:astro-ph/0507418. Bibcode:2005AJ....130.1345E. doi:10.1086/444537. ISSN 0004-6256.
  29. ^ Kimball, Amy E.; Ivezić, Željko; Wiita, Paul J.; Schneider, Donald P. (2011-06-01). "Correlations of Quasar Optical Spectra with Radio Morphology". The Astronomical Journal. 141 (6): 182. arXiv:1103.4791. Bibcode:2011AJ....141..182K. doi:10.1088/0004-6256/141/6/182. ISSN 0004-6256.
  30. ^ Richter, P.; Krause, F.; Fechner, C.; Charlton, J. C.; Murphy, M. T. (2011-04-01). "The neutral gas extent of galaxies as derived from weak intervening Ca ii absorbers". Astronomy and Astrophysics. 528: A12. arXiv:1008.2201. Bibcode:2011A&A...528A..12R. doi:10.1051/0004-6361/201015566. ISSN 0004-6361.
  31. ^ Gupta, N.; Srianand, R.; Petitjean, P.; Bergeron, J.; Noterdaeme, P.; Muzahid, S. (2012-08-01). "Search for cold gas in strong Mg II absorbers at 0.5 < z < 1.5: nature and evolution of 21-cm absorbers". Astronomy and Astrophysics. 544: A21. arXiv:1205.4029. Bibcode:2012A&A...544A..21G. doi:10.1051/0004-6361/201219159. ISSN 0004-6361.
  32. ^ Shen, Yue; Greene, Jenny E.; Strauss, Michael A.; Richards, Gordon T.; Schneider, Donald P. (2008-06-01). "Biases in Virial Black Hole Masses: An SDSS Perspective". The Astrophysical Journal. 680 (1): 169–190. arXiv:0709.3098. Bibcode:2008ApJ...680..169S. doi:10.1086/587475. ISSN 0004-637X.
  33. ^ a b Netzer, Hagai; Lira, Paulina; Trakhtenbrot, Benny; Shemmer, Ohad; Cury, Iara (2007-12-01). "Black Hole Mass and Growth Rate at High Redshift". The Astrophysical Journal. 671 (2): 1256–1263. arXiv:0708.3787. Bibcode:2007ApJ...671.1256N. doi:10.1086/523035. ISSN 0004-637X.