Nitridosilicate
The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.[1]
Related compounds include pnictogenidosilicates :phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.
Use
Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN (calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red.[2]
Production
Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used.[3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere.[4]
Properties
The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride.[5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates.[6]
Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition.[6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis.[1]
SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices.[1]
Use
Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors.[4]
Nitridosilicates
name | formula | formula
weight |
crystal
system |
space
group |
unit cell | volume | density | comments | ref |
---|---|---|---|---|---|---|---|---|---|
LiSi2N3 | [5] | ||||||||
Li2SiN2 | [7] | ||||||||
Li5SiN3 | [7] | ||||||||
Li8SiN4 | [8] | ||||||||
Li18Si3N10 | [7] | ||||||||
Li21Si3N11 | I4 | a=9.4584 c=9.5194 | antifluorite structure | [7] | |||||
BeSiN2 | [9] | ||||||||
MgSiN2 | [5] | ||||||||
NaSi2N3 | [9] | ||||||||
Ca2Si5N8 | 332.64 | monoclinic | Cc | a = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4 | 721.92 | 3.06 | Eu orange fluorescence | [5][10][4] | |
CaSiN2 | [5] | ||||||||
Ca3SiN3H | monoclinic | C2/c | a = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8 | semiconductor: band gap 3.1 eV | [11] | ||||
Ca4SiN4 | [5] | ||||||||
Ca5Si2N6 | [5] | ||||||||
Ca12Si4[SiN4] | triclinic | P1 | a 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763° | black | [12] | ||||
Ca16Si17N34 | [5] | ||||||||
CaMg3SiN4 | I41/a | [13] | |||||||
Ca5[Si2Al2N8] | orthorhombic | Pbcn | a = 9.255 b = 6.140 c = 15.578 | [14] | |||||
LiCa3Si2N5 | monoclinic | C2/c | a = 5.145 b = 20.380 c = 10.357 β = 91.24° | [15] | |||||
Li4Ca3Si2N6 | 288.24 | monoclinic | C2/m | a=5.787 b=9.705 c=5.977 β=90.45 | 335.7 | 2.852 | [5][16] | ||
Li2CaSi2N4 | [5] | ||||||||
Li2Ca2Mg2Si2N6 | [5] | ||||||||
Li2Ca3MgSi2N6 | [5] | ||||||||
CaMg3SiN4 | I41/a | a = 11.424 c = 13.445 Z=16 | [9] | ||||||
CaAlSiN3 | orthorhombic | Cmc21 | Eu yellow fluorescence | [17] | |||||
CaAlSi4N7 | orthorhombic | Pna21 | a = 11.6819, b = 21.0193, c = 4.9177 Å | [18] | |||||
Ca4AlSiN5 | orthorhombic | Pna21 | a 11.2058 b 9.0512 c 6.0203 | faint red | [12] | ||||
Ca5Al2Si2N8 | orthorhombic | Pbca | a= 9.255 b = 6.140 c = 15.578 Z=4 | 885.2 | 3.171 | yellow | [9][19] | ||
CaScSi4N7 | [5] | ||||||||
Manganese silicide dinitride | MnSiN2 | orthorhombic | Pna21 | a = 5.271, b = 6.521, and c = 5.0706 V=174.26 | intense red | [8] | |||
Fe2Si5N8 | 364.23 | monoclinic | Cc | a= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4 | decompose 1370K; brown | [10] | |||
ZnSiN2 | [9] | ||||||||
SrSiN2 | [5] | ||||||||
Sr2Si5N8 | orthorhombic | Pmn21 | a = 5.71006 b = 6.81914 c = 9.33599 Z=2 | 363.52 | 3.908 | Eu red fluorescence | [5][4][20] | ||
SrSi6N8 | [5] | ||||||||
SrSi7N10 | [18] | ||||||||
Sr5Si7P2N16 | 920.83 | Pnma | a=5.6748 b=28.0367 c=9.5280 Z=4 | 1522.1 | 4.018 | [21] | |||
SrAlSi4N7 | orthorhombic | Pna21 | a = 11.742 b = 21.391 c = 4.966 Z = 8 | 1247.2 | [22] | ||||
Li2SrSi2N4 | cubic | a=10.69 Z=12 | 1220 | [5][23] | |||||
Li4Sr3Si2N6 | monoclinic | C2/m | a = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2 | 369.1 | 3.876 | [16] | |||
SrBeSi2N4 | p62c | a=4.86082 c=9.42264 Z=2 | [24] | ||||||
SrMg3SiN4 | I41/a | a = 11.495 c = 13.512 Z=16 | [9][13] | ||||||
Sr8Mg7Si9N22 | Cm | a 15.280 b 7.4691 c 10.936 β 110.462° | [25] | ||||||
SrAlSiN3 | Cmc21 | [17] | |||||||
SrAlSi4N7 | Pna21 | [18] | |||||||
SrScSi4N7 | [5] | ||||||||
YScSi4N6C | hexagonal | P63mc | a=5.9109 c=9.677 | [26] | |||||
CaYSi4N7 | [5] | ||||||||
SrYSi4N7 | [5] | ||||||||
Ca8In2SiN4 | orthorhombic | Ibam | a = 12.904 b = 9.688 c = 10.899 Z = 4 | metallic | [11] | ||||
BaSiN2 | [5] | ||||||||
Ba5Si2N6 | [9] | ||||||||
Ba2Si5N8 | orthorhombic | Pmn21 | Eu red fluorescence | [5][4] | |||||
BaSi6N8 | Imm2 | a = 7.9316, b = 9.3437, c = 4.8357, Z = 2 | 358.38 | [5][27] | |||||
BaSi7N10 | monoclinic | a = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2 | most condensed | [5][28] | |||||
Ba6Si6N10O2(CN2) | P6 | a = 16.255, c = 5.469, Z = 3 | yellow, grown in liquid sodium | [29] | |||||
BaMg3SiN4 | P1 | a = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1 | [30] | ||||||
Ba2AlSi5N9 | triclinic | P1 | a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4 | [31] | |||||
Ba5Si11Al7N25 | Pnnm | a = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2 | with Eu yellow emission | [32] | |||||
BaSi4Al3N9 | P21/C | a = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4 | with Eu blue emission | [32] | |||||
BaScSi4N7 | [5] | ||||||||
BaYSi4N7 | [5] | ||||||||
LaSi3N5 | [5] | ||||||||
La3Si6N11 | [5] | ||||||||
La5Si3N9 | [9] | ||||||||
La7Si6N15 | [9] | ||||||||
Li5La5Si4N12 | tetragonal | P4b2 | a = 11.043 c = 5.573 Z = 2 | [33] | |||||
calcium lanthanum nitridosilicate | CaLaSiN3 | Ca can be substituted by Yb or Eu | [34] | ||||||
CaLaSi4N7 | [5] | ||||||||
CeSi3N5 | [9] | ||||||||
Ce3Si6N11 | [9] | ||||||||
Ce3Si5N9 | [9] | ||||||||
Ce7Si6N15 | triclinic | [9] | |||||||
Ce7Si6N15 | trigonal | [9] | |||||||
Li5Ce5Si4N12 | tetragonal | P4b2 | a = 10.978 c = 5.514 Z = 2 | [33] | |||||
Pr3Si6N11 | [9] | ||||||||
Pr5Si3N9 | [9] | ||||||||
Pr7Si6N15 | [9] | ||||||||
Ba2Nd7Si11N23 | dark blue | [35] | |||||||
Sm3Si6M11 | [9] | ||||||||
Ca3Sm3[Si9N17] | cubic | P4_3m | a=7.3950; Z=1 | 404.4 | [36] | ||||
Eu2SiN3 | Cmca | a = 5.42, b = 10.610, c = 11.629, Z = 8 | [9][37] | ||||||
dieuropium penta siliconoctanitride | Eu2Si5N8 | orthorhombic | Pnm21 | a=5.7094 b=6.8207 c=9.3291 Z=2 | 363.29 | 5.087 | red | [9][38] | |
EuMg3SiN4 | I41/a | a = 11.511 c = 13.552 Z=16 | [13] | ||||||
Ca3Yb3[Si9N17] | cubic | P4_3m | a=730.20 Z=1 | 389.3 | [36] | ||||
BaYbSi4N7 | includes NSi4 clusters | [9][39] | |||||||
europium ytterbium tetrasiliconheptanitride | EuYbSi4N7 | hexagonal | P63mc | a=5.9822 c=9.7455 | 302.03 | 5.887 | brown | [9][38] | |
SrYbSi4N7 | [9] | ||||||||
EuYbSi4N7 | [9] | ||||||||
CaLuSi4N7 | [5] | ||||||||
SrLuSi4N7 | [5] | ||||||||
BaLuSi4N7 | [5] | ||||||||
Pb2Si5N8 | 666.90 | orthorhombic | Pmn21 | a = 5.774 b = 6.837 c = 9.350 | 269.11 | 6.001 | Pb-Pb dumbbells | [20] |
References
- ^ a b c Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
- ^ Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN 978-0-9863826-6-6.
- ^ Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal. 3 (5): 679–683. doi:10.1002/chem.19970030505.
- ^ a b c d e Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications". Materials. 3 (6): 3777–3793. Bibcode:2010Mate....3.3777X. doi:10.3390/ma3063777. PMC 5521753. S2CID 18883144.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition". Journal of Materials Chemistry C. 6 (21): 5671–5683. doi:10.1039/C8TC00885J. ISSN 2050-7526.
- ^ a b ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates". Journal of Materials Chemistry C. 5 (44): 11504–11514. doi:10.1039/C7TC04259K. ISSN 2050-7526.
- ^ a b c d Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O". Journal of Solid State Chemistry. 213: 152–157. Bibcode:2014JSSCh.213..152C. doi:10.1016/j.jssc.2014.02.022.
- ^ a b Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials. 18 (11): 2713–2718. doi:10.1021/cm060382t.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+". Inorganic Chemistry. 57 (4): 2320–2331. doi:10.1021/acs.inorgchem.7b03253. ISSN 0020-1669. PMID 29394040.
- ^ a b Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates". Angewandte Chemie International Edition. 57 (9): 2409–2412. doi:10.1002/anie.201713006. PMID 29336096.
- ^ a b Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. ISSN 0020-1669. PMID 28749660.
- ^ a b Link, Lukas; Niewa, Rainer (2022-05-25). "Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5 ) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi:10.1002/zaac.202200004. ISSN 0044-2313.
- ^ a b c Schmiechen, Sebastian; Schneider, Hajnalka; Wagatha, Peter; Hecht, Cora; Schmidt, Peter J.; Schnick, Wolfgang (2014-04-22). "Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]:Ce 3+ , Sr[Mg 3 SiN 4 ]:Eu 2+ , and Eu[Mg 3 SiN 4 ]". Chemistry of Materials. 26 (8): 2712–2719. doi:10.1021/cm500610v. ISSN 0897-4756.
- ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi:10.1002/zaac.201000046. ISSN 0044-2313.
- ^ Lupart, Saskia; Schnick, Wolfgang (October 2012). "LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain". Zeitschrift für anorganische und allgemeine Chemie. 638 (12–13): 2015–2019. doi:10.1002/zaac.201200106. ISSN 0044-2313.
- ^ a b Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions". Zeitschrift für anorganische und allgemeine Chemie. 636 (11): 1907–1909. doi:10.1002/zaac.201000163.
- ^ a b Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors". Journal of the Electrochemical Society. 155 (3): F31. doi:10.1149/1.2829880.
- ^ a b c Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7". Inorganic Chemistry. 59 (1): 367–375. doi:10.1021/acs.inorgchem.9b02609. ISSN 0020-1669. PMID 31808685. S2CID 208744271.
- ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi:10.1002/zaac.201000046. ISSN 0044-2313.
- ^ a b Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann-Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8". Angewandte Chemie International Edition. 58 (5): 1432–1436. doi:10.1002/anie.201812457. ISSN 1433-7851. PMID 30536686. S2CID 54473446.
- ^ Dialer, Marwin; Pointner, Monika M.; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2023-12-28). "(Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c04109. ISSN 0020-1669. PMID 38154029. S2CID 266597393.
- ^ Hecht, Cora; Stadler, Florian; Schmidt, Peter J.; auf der Günne, Jörn Schmedt; Baumann, Verena; Schnick, Wolfgang (2009-04-28). "SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (8): 1595–1601. doi:10.1021/cm803231h. ISSN 0897-4756.
- ^ Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability". Journal of Materials Chemistry C. 6 (13): 3435–3444. doi:10.1039/C7TC04397J. ISSN 2050-7526.
- ^ Strobel, Philipp; Weiler, Volker; Schmidt, Peter J.; Schnick, Wolfgang (2018-05-17). "Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates". Chemistry – A European Journal. 24 (28): 7243–7249. doi:10.1002/chem.201800912. ISSN 0947-6539. PMID 29575174.
- ^ Li, Chao; Zheng, Hong-Wei; Wei, Heng-Wei; Su, Jie; Liao, Fu-Hui; Zhang, Zhen-Yi; Xu, Ling; Yang, Zu-Pei; Wang, Xiao-Ming; Jiao, Huan (2018). "Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs". Chemical Communications. 54 (82): 11598–11601. doi:10.1039/C8CC07218C. ISSN 1359-7345. PMID 30264071.
- ^ Yan, Chunpei; Liu, Zhanning; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Liu, Yuanhong; Chen, Guantong; Li, Yanfeng; Ma, Xiaole (2017-09-18). "YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes". Inorganic Chemistry. 56 (18): 11087–11095. doi:10.1021/acs.inorgchem.7b01408. ISSN 0020-1669.
- ^ Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589–592. doi:10.1002/zaac.200600356.
- ^ Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10". Chemistry - A European Journal. 3 (2): 249–252. doi:10.1002/chem.19970030213. PMID 24022955.
- ^ Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions". European Journal of Inorganic Chemistry. 2009 (18): 2678–2683. doi:10.1002/ejic.200900157.
- ^ Schmiechen, Sebastian; Strobel, Philipp; Hecht, Cora; Reith, Thomas; Siegert, Markus; Schmidt, Peter J.; Huppertz, Petra; Wiechert, Detlef; Schnick, Wolfgang (10 March 2015). "Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors". Chemistry of Materials. 27 (5): 1780–1785. doi:10.1021/cm504604d.
- ^ Kechele, Juliane A.; Hecht, Cora; Oeckler, Oliver; Schmedt auf der Günne, Jörn; Schmidt, Peter J.; Schnick, Wolfgang (2009-04-14). "Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (7): 1288–1295. doi:10.1021/cm803233d. ISSN 0897-4756.
- ^ a b Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach". Chemistry of Materials. 26 (14): 4280–4288. doi:10.1021/cm501866x. ISSN 0897-4756.
- ^ a b Lupart, Saskia; Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang (June 2010). "Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce". European Journal of Inorganic Chemistry. 2010 (18): 2636–2641. doi:10.1002/ejic.201000245. ISSN 1434-1948.
- ^ ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter. 26 (38): 385502. Bibcode:2014JPCM...26L5502T. doi:10.1088/0953-8984/26/38/385502. PMID 25186054. S2CID 29879915.
- ^ Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure". Angewandte Chemie International Edition in English. 36 (23): 2651–2652. doi:10.1002/anie.199726511. ISSN 0570-0833.
- ^ a b Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra". Chemistry - A European Journal. 18 (35): 10857–10864. doi:10.1002/chem.201200813. PMID 22829445.
- ^ Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3". Journal of the American Chemical Society. 131 (31): 11242–11248. doi:10.1021/ja9040237. ISSN 0002-7863. PMID 19610643.
- ^ a b Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal". Acta Crystallographica Section C Crystal Structure Communications. 53 (12): 1751–1753. Bibcode:1997AcCrC..53.1751H. doi:10.1107/S0108270197008767. ISSN 0108-2701.
- ^ Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates". Angewandte Chemie International Edition in English. 35 (17): 1983–1984. doi:10.1002/anie.199619831. ISSN 0570-0833.