Rapid response system

Source: Wikipedia, the free encyclopedia.
(Redirected from Medical emergency team)

A rapid response system (RRS) is a system implemented in many hospitals designed to identify and respond to patients with early signs of clinical deterioration on non-intensive care units with the goal of preventing respiratory or cardiac arrest.[1] A rapid response system consists of two clinical components, an afferent component, an efferent component, and two organizational components – process improvement and administrative.[2]

The afferent component consists of identifying the input early warning signs that alert a response from the efferent component, the rapid response team.[3] Rapid response teams are those specific to the US, the equivalent in the UK are called Critical care outreach teams, and in Australia are known as Medical emergency teams, though the term rapid response teams is often used as a generic term.[4] In the rapid response system of a hospital's pediatric wards a prequel to the rapid response team known as a rover team is sometimes used that continuously monitors the children in its care.[5]

Components

Afferent

The afferent component, or identification limb, also known as the track-and-trigger system, uses standardized tools to track early signs of reversible clinical deterioration and trigger a call to, and response from the efferent component, or response limb.[6][7] Examples of afferent tools include single-parameter calling criteria and multi-parameter early warning scores.[1] These tools can predict clinical deterioration based upon the patient’s medical condition, and detect deterioration through the patient’s state such as a high respiratory rate.[2] Single-parameter calling criteria require that only one criterion be met before activating the efferent component. Criteria may be based on vital signs, diagnoses, events, subjective observations, or concerns of the patient.[2] Multi-parameter tools are more complex in that they combine several parameters into a single early warning score (EWS).[2]

Efferent

The efferent component is a rapid response team – a multidisciplinary team trained in early resuscitation interventions, and advanced life support that rushes to the deteriorating patient’s bedside to prevent respiratory and cardiac arrest in order to improve the patient’s outcomes. The team is known in the US as a rapid response team (RRT), in the UK as a critical care outreach team (CCOT), and in Australia as a medical emergency team (MET), but rapid response team is also used generically.The team responds to calls placed by clinicians or families at the bedside who have detected deterioration.[8][4] It may also provide proactive outreach to patients at high risk for deterioration. Composition of the teams may vary but often include one critical care attending physician or fellow, at least one nurse, and a respiratory therapist.[9]

Process improvement

The process improvement component uses evidence-based evaluation of the RRS to determine its effectiveness and to improve the system through targeted interventions. It works closely with the administrative component, clinicians (especially those on RRTs), and quality improvement experts to evaluate three measures: outcomes measures, process measures, and balancing measures.[9]

Outcomes measures

Rates of hospital-wide mortality and respiratory and cardiac arrest, which are exceedingly rare and may or may not be preventable, are common outcome measures.[10] Rapid response teams appear to decrease the rates of respiratory and cardiac arrest outside the intensive care unit.[11][12][13][14] They also appear to decrease the chance of death in hospital.[11] Overall effectiveness of rapid response teams is somewhat controversial due to the variability across studies[12][15][16] as is the overall effectiveness of the rapid response system in improving patient safety.[10][17] More recent work uses proximal outcome measures, such as the Children’s Resuscitation Intensity Scale (measures level of care within 12 hours pre-transfer),[18] the Clinical Deterioration Metric (measures level of care within 12 hours post-transfer),[19] and UNSAFE transfers (measures level of care within 1 hour post-transfer).[20]

Process measures

Process measures determine if the RRS is used as intended. Measures include the MET call rate, percentage of MET calls that result in transfer to the ICU, the time between initial physiologic abnormality and admission to ICU, timing of calls, reasons for MET calls, and evaluation of early warning scores using sensitivity and specificity.[21][22][23]

Balancing measures

Balancing measures evaluate any unintended consequences of the RRS. Identified barriers to activating the MET include the primary team’s overconfidence in their ability to stabilize the patient, poor communication, hierarchal problems, and hospital culture.[24][25][26] Interventions to overcome barriers include improved intradisciplinary staff education, protocol requiring activation when calling criteria are met, and use of “champions” to foster cultural change.[27][28]

Administrative component

The administrative component oversees the planning, implementation, and maintenance phases for the RRS. A formal committee of frontline clinicians and ward and ICU leaders operate the administrative component.[9] Cost effectiveness of RRS implementation has not been rigorously studied.[13]

Family activation

METs were originally activated exclusively by bedside clinicians in need of emergency assistance. Recently, many hospitals have begun to allow families to activate a MET if they feel the care team is not adequately addressing their concerns. The team may differ in composition from the clinician-activated MET such as including a patient relations coordinator.[29]

Family-activated METs were put in place as a response to the preventable death of Josie King in 2001. King was 18-months old when she died at Johns Hopkins Medical Center from medical errors and delays in escalation of care despite her family’s concerns. As a result of the highly publicized death, the Children’s Hospital of Pittsburgh began a program called Condition HELP that allows families to activate a MET. Families receive training on Condition HELP when the patient is admitted and are asked to voice concerns to their care team before activating the MET.[29]

History

Lee and colleagues developed the first reported MET in 1995 in Liverpool Hospital in Australia.[30] The first pediatric RRS was implemented in 2005 by Tibballs, Kinney, and colleagues at Royal Children’s Hospital in Australia which included vital sign ranges that differed by age group.[31] Since its development, the RRS has been implemented around the world. The RRS became a standard of hospitals in the U.S. after its promotion by the Institute for Healthcare Improvement in 2005 and the Joint Commission in 2008.[32][33] Outside the U.S., RRS implementation has been encouraged and adopted by several national organizations, such as the Ministry of Health and Long-term Care in Canada,[34] the UK National Institute for Health and Clinical Excellence,[35] and the Australian Commission on Safety and Quality in Healthcare.[36]

References

  1. ^ a b Jones, DA; DeVita, MA; Bellomo, R (Jul 14, 2011). "Rapid-response teams". The New England Journal of Medicine. 365 (2): 139–46. doi:10.1056/NEJMra0910926. PMID 21751906.
  2. ^ a b c d DeVita, MA; Smith, GB; Adam, SK; Adams-Pizarro, I; Buist, M; Bellomo, R; Bonello, R; Cerchiari, E; Farlow, B; Goldsmith, D; Haskell, H; Hillman, K; Howell, M; Hravnak, M; Hunt, EA; Hvarfner, A; Kellett, J; Lighthall, GK; Lippert, A; Lippert, FK; Mahroof, R; Myers, JS; Rosen, M; Reynolds, S; Rotondi, A; Rubulotta, F; Winters, B (April 2010). ""Identifying the hospitalised patient in crisis"--a consensus conference on the afferent limb of rapid response systems". Resuscitation. 81 (4): 375–82. doi:10.1016/j.resuscitation.2009.12.008. PMID 20149516.
  3. ^ Han, WH; Sohn, DK; Hwangbo, Y; et al. (26 August 2022). "Effect of a Wireless Vital Sign Monitoring System on the Rapid Response System in the General Ward". Journal of medical systems. 46 (10): 64. doi:10.1007/s10916-022-01846-8. PMC 9418097. PMID 36018468.
  4. ^ a b "Critical care outreach teams". Retrieved 3 October 2023.
  5. ^ Henriksen K, Battles JB, Keyes MA, Grady ML, Hueckel RM, Turi JL, Cheifetz IM, Mericle J, Meliones JN, Mistry KP. "Beyond Rapid Response Teams: Instituting a "Rover Team" Improves the Management of At-Risk Patients, Facilitates Proactive Interventions, and Improves Outcomes". PMID 21249937. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ "Evidence review and recommendations". Acutely Ill Patients in Hospital: Recognition of and Response to Acute Illness in Adults in Hospital [Internet]. National Institute for Health and Clinical Excellence (NICE). July 2007. Retrieved 1 October 2023.
  7. ^ Levin, Amanda B.; Brady, Patrick; Duncan, Heather P.; Davis, Aisha Barber (1 March 2015). "Pediatric Rapid Response Systems: Identification and Treatment of Deteriorating Children". Current Treatment Options in Pediatrics. pp. 76–89. doi:10.1007/s40746-014-0005-1. Retrieved 25 October 2023.
  8. ^ Hueckel, Rémi M.; Turi, Jennifer L.; Cheifetz, Ira M.; Mericle, Jane; Meliones, Jon N.; Mistry, Kshitij P. (2008). "Beyond Rapid Response Teams: Instituting a "Rover Team" Improves the Management of At-Risk Patients, Facilitates Proactive Interventions, and Improves Outcomes". Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 3: Performance and Tools). Agency for Healthcare Research and Quality (US). PMID 21249937. Retrieved 1 October 2023.
  9. ^ a b c Devita, MA; Bellomo, R; Hillman, K; Kellum, J; Rotondi, A; Teres, D; Auerbach, A; Chen, WJ; Duncan, K; Kenward, G; Bell, M; Buist, M; Chen, J; Bion, J; Kirby, A; Lighthall, G; Ovreveit, J; Braithwaite, RS; Gosbee, J; Milbrandt, E; Peberdy, M; Savitz, L; Young, L; Harvey, M; Galhotra, S (September 2006). "Findings of the first consensus conference on medical emergency teams". Critical Care Medicine. 34 (9): 2463–78. doi:10.1097/01.CCM.0000235743.38172.6E. PMID 16878033. S2CID 20076741.
  10. ^ a b Chan, PS; Jain, R; Nallmothu, BK; Berg, RA; Sasson, C (Jan 11, 2010). "Rapid Response Teams: A Systematic Review and Meta-analysis". Archives of Internal Medicine. 170 (1): 18–26. doi:10.1001/archinternmed.2009.424. PMID 20065195.
  11. ^ a b Solomon, RS; Corwin, GS; Barclay, DC; Quddusi, SF; Dannenberg, MD (June 2016). "Effectiveness of rapid response teams on rates of in-hospital cardiopulmonary arrest and mortality: A systematic review and meta-analysis". Journal of Hospital Medicine. 11 (6): 438–445. doi:10.1002/jhm.2554. PMID 26828644.
  12. ^ a b Chan, PS; Jain, R; Nallmothu, BK; Berg, RA; Sasson, C (2010-01-11). "Rapid Response Teams: A Systematic Review and Meta-analysis". Archives of Internal Medicine. 170 (1): 18–26. doi:10.1001/archinternmed.2009.424. PMID 20065195.
  13. ^ a b Winters, BD; Weaver, SJ; Pfoh, ER; Yang, T; Pham, JC; Dy, SM (Mar 5, 2013). "Rapid-response systems as a patient safety strategy: a systematic review". Annals of Internal Medicine. 158 (5 Pt 2): 417–25. doi:10.7326/0003-4819-158-5-201303051-00009. PMC 4695999. PMID 23460099.
  14. ^ Kronick, SL; Kurz, MC; Lin, S; Edelson, DP; Berg, RA; Billi, JE; Cabanas, JG; Cone, DC; Diercks, DB; Foster, JJ; Meeks, RA; Travers, AH; Welsford, M (3 November 2015). "Part 4: Systems of Care and Continuous Quality Improvement: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 132 (18 Suppl 2): S397–413. doi:10.1161/cir.0000000000000258. PMID 26472992.
  15. ^ Massey, D; Aitken, LM; Chaboyer, W (Dec 2010). "Literature review: do rapid response systems reduce the incidence of major adverse events in the deteriorating ward patient?". Journal of Clinical Nursing. 19 (23–24): 3260–73. doi:10.1111/j.1365-2702.2010.03394.x. hdl:10072/35936. PMID 21029228.
  16. ^ Winters, BD; Pham, JC; Hunt, EA; Guallar, E; Berenholtz, S; Pronovost, PJ (May 2007). "Rapid response systems: a systematic review". Critical Care Medicine. 35 (5): 1238–43. doi:10.1097/01.CCM.0000262388.85669.68. PMID 17414079.
  17. ^ Hillman, K; Chen, J; Cretikos, M; Bellomo, R; Brown, D; Doig, G; Finfer, S; Flabouris, A; MERIT study, investigators (Jun 18–24, 2005). "Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial". Lancet. 365 (9477): 2091–7. doi:10.1016/S0140-6736(05)66733-5. PMID 15964445. S2CID 1101381.
  18. ^ Parshuram, CS; Bayliss, A; Reimer, J; Middaugh, K; Blanchard, N (March 2011). "Implementing the Bedside Paediatric Early Warning System in a community hospital: A prospective observational study". Paediatrics & Child Health. 16 (3): e18–22. doi:10.1093/pch/16.3.e18. PMC 3077313. PMID 22379384.
  19. ^ Bonafide, CP; Roberts, KE; Priestley, MA; Tibbetts, KM; Huang, E; Nadkarni, VM; Keren, R (April 2012). "Development of a pragmatic measure for evaluating and optimizing rapid response systems". Pediatrics. 129 (4): e874–81. doi:10.1542/peds.2011-2784. PMID 22392182. S2CID 22120592.
  20. ^ Brady, PW; Muething, S; Kotagal, U; Ashby, M; Gallagher, R; Hall, D; Goodfriend, M; White, C; Bracke, TM; DeCastro, V; Geiser, M; Simon, J; Tucker, KM; Olivea, J; Conway, PH; Wheeler, DS (January 2013). "Improving situation awareness to reduce unrecognized clinical deterioration and serious safety events". Pediatrics. 131 (1): e298–308. doi:10.1542/peds.2012-1364. PMC 4528338. PMID 23230078.
  21. ^ Oglesby, KJ; Durham, L; Welch, J; Subbe, CP (Jul 27, 2011). "'Score to Door Time', a benchmarking tool for rapid response systems: a pilot multi-centre service evaluation" (PDF). Critical Care. 15 (4): R180. doi:10.1186/cc10329. PMC 3387623. PMID 21794137.
  22. ^ Santiano, N; Young, L; Hillman, K; Parr, M; Jayasinghe, S; Baramy, LS; Stevenson, J; Heath, T; Chan, C; Claire, M; Hanger, G (January 2009). "Analysis of medical emergency team calls comparing subjective to "objective" call criteria". Resuscitation. 80 (1): 44–9. doi:10.1016/j.resuscitation.2008.08.010. PMID 18952358.
  23. ^ Fullerton, JN; Price, CL; Silvey, NE; Brace, SJ; Perkins, GD (May 2012). "Is the Modified Early Warning Score (MEWS) superior to clinician judgement in detecting critical illness in the pre-hospital environment?". Resuscitation. 83 (5): 557–62. doi:10.1016/j.resuscitation.2012.01.004. PMID 22248688.
  24. ^ Nembhard, IM; Edmondson AC (2006). "Making it safe: The effects of leader inclusiveness and professional status on psychological safety and improvement efforts in health care teams". Journal of Organizational Behavior. 27 (7): 941–966. doi:10.1002/job.413.
  25. ^ Mackintosh, N; Rainey, H; Sandall, J (February 2012). "Understanding how rapid response systems may improve safety for the acutely ill patient: learning from the frontline". BMJ Quality & Safety. 21 (2): 135–44. doi:10.1136/bmjqs-2011-000147. PMID 21972419. S2CID 23492881.
  26. ^ Shearer, B; Marshall, S; Buist, MD; Finnigan, M; Kitto, S; Hore, T; Sturgess, T; Wilson, S; Ramsay, W (2012). "What stops hospital clinical staff from following protocols? An analysis of the incidence and factors behind the failure of bedside clinical staff to activate the rapid response system in a multi-campus Australian metropolitan healthcare service". BMJ Quality and Safety. 21 (7): 569–575. doi:10.1136/bmjqs-2011-000692. PMC 3382445. PMID 22626737.
  27. ^ Theilen, U; Leonard, P; Jones, P; Ardill, R; Weitz, J; Agrawal, D; Simpson, D (February 2013). "Regular in situ simulation training of paediatric medical emergency team improves hospital response to deteriorating patients". Resuscitation. 84 (2): 218–22. doi:10.1016/j.resuscitation.2012.06.027. PMID 22796407.
  28. ^ DeVita, M, Hillman, K (2006). "Potential Sociological and Political Barriers to Medical Emergency Team Implementation". In DeVita M, Hillman K, Bellomo R (eds.). Medical Emergency Teams: Implementation and Outcome Measurement. New York: Springer. pp. 91–103.
  29. ^ a b "Condition Help (Condition H)". Josie King Foundation. Retrieved 22 October 2013.[dead link]
  30. ^ Lee, A; Bishop, G; Hillman, KM; Daffurn, K (April 1995). "The Medical Emergency Team". Anaesthesia and Intensive Care. 23 (2): 183–6. doi:10.1177/0310057X9502300210. PMID 7793590.
  31. ^ Tibballs, J; Kinney, S; Duke, T; Oakley, E; Hennessy, M (November 2005). "Reduction of paediatric in-patient cardiac arrest and death with a medical emergency team: preliminary results". Archives of Disease in Childhood. 90 (11): 1148–52. doi:10.1136/adc.2004.069401. PMC 1720176. PMID 16243869.
  32. ^ Institute for Healthcare Improvement. "5 Million Lives Campaign". Retrieved 18 October 2013.
  33. ^ The Joint Commission (July 2007). "The Joint Commission 2008 National Patient Safety Goals". Joint Commission Perspectives. 27 (7): 19.
  34. ^ Ontario Ministry of Health; Long-term Care. "Critical Care Strategy". Retrieved 18 October 2013.
  35. ^ UK National Institute for Health and Clinical Excellence (NICE) (July 2007). "Acutely ill patients in hospital: recognition of and response to acute illness in adults in hospital". Retrieved 18 October 2013.
  36. ^ Australian Commission on Safety and Quality in Health Care (September 2011). "National Safety and Quality Health Service Standards" (PDF). Sydney. Retrieved 18 October 2013.